11. N. A. Marchenko and A. Kh. Pergament, "Computer analysis of fringe patterns," Preprint No. 42, Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow (1982).
12. S. I. Gerasimov, V. I. Guzhov, V. A. Zhilkin, and A. G. Kozachok, "Automation of the analysis of fringe patterns in the study of strain fields," Zavod. Lab., No. 4 (1985).
13. Yu. V. Veryuzhskii and A. N. Beskov, "Study of complex three-dimensional structures by the potential and holographic methods," Tr. In-tov Inzh. Zh-d. Transp. (MIIT), No. 669 (1980).
14. I. A. Birger, "Some common methods of solving problems of the theory of plasticity," Prikl. Mat. Mekh., 5, No. 6 (1951).
15. A. A. Il'yushin, Principles of the Theory of Plasticity [in Russian], Gostekhizdat, Moscow (1948).
16. A. Ya. Aleksandrov, "Solutions of basic three-dimensional problems of the theory of elasticity for bodies of arbitrary form by numerical realization of the method of integral equations," Dokl. Akad. Nauk SSSR, 208, No. 2 (1973).

DETERMINATION OF STRESS INTENSITY FACTORS AT THE TIPS OF CRACKS GROWING

FROM LOADED HOLES IN FINITE ANISOTROPIC PLATES
V. N. Maksimenko

UDC 539.43:621.8

In pin, bolt, and rivet joints, stress concentration in combination with fretting between the fastening element and the surface of the hole may lead to the formation of damages and defects. In order to be able to predict the safe life of a structure, it is necessary to be able to precisely calculate the limit load and estimate the growth of defects near fastener holes in such joints. A survey of the studies done in this area for isotropic elastic plates can be found in [1, 2], for example. Progress is being made relatively slowly in regard to the investigation of the problem for plates made of composite materials (see the surveys in [3-5], for example). The reason for this is a shortage of information on the effect of the anisotropy of the material, the boundaries of the plate, and the type of load transmission on the stress intensity factors (SIF) at the tips of cracks near loaded holes.

In the present study, we construct special representations of the solution of problems involving determination of the elastic equilibrium of a finite rectilinear anisotropic plate with a system of through slits and a loaded elliptical hole. Automatic satisfaction of the boundary conditions at the contour of the hole makes it possible to reduce the problem to the solution of a system of integral equations (IE) whose order is one less than the number of components of the boundary of the region. The absence of an unknown function at the boundary of the hole makes it possible to more efficiently find numerical solutions. Using the example of a rectangular plate with cracks originating from the contour of a hole loaded through a pin, we study the effect of anisotropy of the material, a wide range of pin-joint geometries, and different combinations of load transmission from the pin and seat with interference on the value of the SIF at the tips of the cracks. Data for an isotropic material is obtained by taking the limit in the anisotropy parameters in a numerical solution.

We will examine an elastic, rectilinearly anisotropic plate of constant thickness h bounded by closed contours Λ (an ellipse with the semiaxes a and b) and L_{0} (smooth longitudinal external contour) and having n smooth internal through slits (cracks) $L_{j}(j=1, n$). The plate is loaded by a self-balanced system of external forces applied to L_{0} and Λ. The edges of the slits $L^{\prime}=\bigcup_{j=1}^{n} L_{j}$ are not loaded. We will make the axes of symmetry of the ellipse coincide with the axes of the Cartesian coordinate system x0y. As the positive direction on L_{0} we take the direction which leaves the plate on the left. On the slit L_{j}, with ends a_{j} and b_{j}, the positive direction leads from a_{j} to b_{j}. We direct the normal n to the

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 171-177, March-April, 1990. Original article submitted January 23, 1989.
right with positive circumvention $L=\bigcup_{j=0}^{n} L_{j}$. A generalization to the case of edge notches is given below.

The stress state of the plate can be expressed through two functions $\Phi_{\nu}\left(z_{\nu}\right)\left(z_{V}=x+\right.$ $\mu_{\nu} y, \nu=1,2$) [6]

$$
\begin{equation*}
\left(\sigma_{x}, \tau_{x y}, \sigma_{y}\right)=2 \operatorname{Re}\left\{\sum_{v=1}^{2}\left(\mu_{v}^{2},-\mu_{v}, 1\right) \Phi_{v}\left(z_{v}\right)\right\}, \tag{1}
\end{equation*}
$$

satisfying the boundary conditions [7, 8]:

$$
\begin{gather*}
a(t) \Phi_{1}^{+}\left(t_{1}\right)+b(t) \overline{\Phi^{+}{ }_{1}\left(t_{1}\right)}+\Phi_{2}{ }_{2}\left(t_{2}\right)=F(t) \tag{2}\\
F(t)=\left[X_{n}(t)+\bar{\mu}_{2} Y_{n}(t)\right]\left[\left(\mu_{2}-\bar{\mu}_{2}\right) M_{2}(t)\right]^{-1}, t \in \Lambda \cup L_{0} ; \\
a(t) \Phi_{1}^{ \pm}\left(t_{1}\right)+b(t) \overline{\Phi_{1}^{ \pm}\left(t_{1}\right)}+\Phi_{2}^{ \pm}\left(t_{2}\right)=0, t \in L^{\prime} \tag{3}
\end{gather*}
$$

Here and below, we use the notation from [8]; the superscript $+(-)$ denotes the limiting value of functions as they approach the contour from the left (right); $X_{n}(t)$, $Y_{n}(t)$ are projections of the external forces at the point $t \in \Lambda \cup L_{0}$ on the x, y axes; μ_{ν} are roots of the characteristic equation.

Using the results in [8], we represent the sought functions as

$$
\begin{gather*}
\Phi_{v}\left(z_{v}\right)=\sum_{j=0}^{1} \Phi_{v}^{j}\left(z_{v}\right) \\
\Phi_{v}^{1}\left(z_{v}\right)=\left[2 \pi i \omega_{v}^{\prime}\left(\zeta_{v}\right)\right]^{-1} \int_{L}\left\{\frac{\Omega_{v}(\tau) d \tau_{v}}{\eta_{v}-\zeta_{v}}+\frac{l_{v} \overline{\Omega_{1}(\tau)} d \bar{\tau}_{1}}{\zeta_{v}\left(\zeta_{v} \bar{\eta}_{1}-1\right)}+\frac{n_{v} \overline{\Omega_{2}(\tau)} d \bar{\tau}_{2}}{\zeta_{v}\left(\zeta_{v} \bar{\eta}_{2}-1\right)}\right\}, \tag{4}
\end{gather*}
$$

where $\Omega_{\nu}(t)=\left\{\Omega_{\nu j}(t) \mid t \in L_{j}, j=\overline{0, n}\right\}$ are unknown complex functions; $\Phi_{\nu}{ }^{2}\left(z_{\nu}\right)$ is the solution for an infinite anisotropic plate with an elliptical hole subjected to specified external forces about its contour.

We will use $r(\gamma)$ and $q(\gamma)$ to represent the projections of the external forces on a normal and a tangent to the contour $\Lambda=\{z=a \cos \gamma-i b \sin \gamma \mid 0 \leq \gamma<2 \pi\}$. To avoid the computational problems that would arise if $\Phi_{\nu}{ }^{\circ}\left(z_{\nu}\right)$ were represented in the form of an infinite series or integrals of the Cauchy type [6], we will approximate $r(\gamma)$ and $q(\gamma)$ by piecewiseconstant expressions

$$
\begin{gathered}
r(\gamma) \approx r_{j}, q(\gamma) \approx q_{j}, \gamma_{j-1} \leqslant \gamma \leqslant \gamma_{j}, \gamma_{j}=j \Delta \gamma \\
\Delta \gamma=2 \pi / k, j=\overline{1, k}
\end{gathered}
$$

This can always be done with a prescribed degree of accuracy given sufficiently large k . Then after performing certain transformations we obtain the following closed analytical representations for $\Phi_{\nu}{ }^{0}\left(z_{\nu}\right)$:

$$
\begin{gather*}
\Phi_{v}^{0}\left(z_{v}\right)=\left[z_{v}^{\prime}\left(\xi_{v}\right)\right]^{-1} \sum_{j=1}^{k}\left\{r_{j} \Phi_{v 1}^{j}\left(z_{v}\right)+q_{j} \Phi_{v 2}^{j}\left(z_{v}\right)\right\}, \\
\Phi_{v p}^{j}\left(z_{v}\right)=-\frac{A_{v j}^{p}}{\xi_{v}}+\frac{M_{v j}^{p}}{\left(\mu_{v}-\mu_{3-v}\right)\left(\sigma_{j}-\xi_{v}\right)}-\frac{i}{4 \pi\left(\mu_{v}-\mu_{3-v}\right)}\left\{\left[a_{p} \Delta_{j}+b_{p} \delta_{j}\right] s_{v j}+\right. \\
\left.+b_{v p}\left[\ln t_{v j}-\xi_{v} s_{v j}\right]+c_{v p}\left[\frac{s_{v j}}{\xi_{v}}+\frac{1}{\xi_{v}^{2}}\left(\ln t_{v j}-\ln m_{j}\right)\right]\right\}, \tag{5}\\
a_{1}=-a \mu_{3-v}, a_{2}=a, b_{1}=i b, b_{2}=i b \mu_{3-v}, \mu_{v}=\alpha_{v}+i \beta_{v}, \\
\Delta_{j}=\sigma_{j-1}+\frac{1}{\sigma_{j-1}}, \quad \delta_{j}=\sigma_{j-1}-\frac{1}{\sigma_{j-1}}, s_{v j}=\frac{\sigma_{j}-\sigma_{j-1}}{\left(\sigma_{j}-\xi_{v}\right)\left(\sigma_{j-1}-\xi_{v}\right)}, \\
b_{v 1}=i b-a \mu_{3-v}, \quad b_{v 2}=a+i b \mu_{3-v}, \quad t_{v j}=\frac{\sigma_{j-1}-\xi_{v}}{\sigma_{j}-\xi_{v}}, c_{v 1}=i b+a \mu_{3-v}, \\
c_{v 2}=i b \mu_{3-v}-a, m_{j}=\sigma_{j-1} / \sigma_{j},
\end{gather*}
$$

Fig. 2

$$
\begin{gather*}
M_{v j}^{p}=2 i\left[\mu_{3-v} \operatorname{Im}\left(A_{1 j}^{p}+A_{2 j}^{p}\right)-\sum_{\mu=1}^{2}\left(\beta_{\mu} \operatorname{Re} A_{v j}^{p}+\alpha_{\mu} \operatorname{Im} A_{\mu j}^{p}\right)\right] \tag{5}\\
z_{v}=z_{v}\left(\xi_{v}\right)=\frac{a+i \mu_{v} b}{2} \xi_{v}+\frac{a-i \mu_{v} b}{2} \frac{1}{\xi_{v}}, \quad\left|\xi_{v}\right|<1 \\
\xi_{v}=\xi_{v}\left(z_{v}\right)=\frac{z_{v}-\sqrt{z_{v}^{2}-\left(a^{2}+\mu_{v}^{2} b^{2}\right)}}{a+i \mu_{v} b}, \quad \xi_{v}(\infty)=0
\end{gather*}
$$

where $\sigma_{j}=\exp \left(-i \gamma_{j}\right)$, while $A_{\nu j} p$ are determined from the system of equations

$$
\begin{gathered}
\sum_{v=1}^{2}\left(\mu_{v}^{k-2} A_{v j}^{p}-\overline{\mu_{v}^{k-2}} \overline{A_{v j}^{p}}\right)=b_{k}^{p} /(2 \pi i) \quad(k=\overline{1,4}), \\
b_{1}^{p}=\frac{-a_{12} b_{3}^{p}+a_{26} b_{2}^{p}}{a_{22}}, \quad b_{2}^{1}=\frac{a}{2}\left(\Delta_{j+1}-\Delta_{j}\right), \quad b_{2}^{2}=\frac{i b}{2}\left(\delta_{j}-\delta_{j+1}\right), \\
b_{3}^{1}=-b_{2}^{2}, \quad b_{3}^{2}=-b_{2}^{1}, \quad b_{4}^{p}=\frac{a_{16} b_{3}^{p}-a_{12} b_{2}^{p}}{a_{11}} .
\end{gathered}
$$

Here, $\Phi_{V p}{ }^{j}\left(z_{v}\right)$ are solutions for a plate with a hole loaded on the part $\left[z\left(\gamma_{j-1}\right), z\left(\gamma_{j}\right)\right]$ of the contour Λ by unit normal forces $(p=1)$ and shearing forces ($p=2$).

The thus-constructed potentials $\Phi_{\nu}\left(z_{\nu}\right)(4)$, (5) automatically satisfy boundary conditions (2) on Λ. Following [7], we take

$$
\begin{equation*}
\Omega_{2}(t)=-a(t) \Omega_{1}(t)+b(t) \overline{\Omega_{1}(t)}, t \in L_{0} \tag{6}
\end{equation*}
$$

Inserting limiting values of $\Phi_{\nu}\left(z_{\nu}\right)$ from (4) into boundary conditions (2)-(3), considering (6), and performing certain transformations, we obtain a system of singular $I E$ on L^{\prime} and Fredholm IE of the second kind on L_{0} for the sought functions $\Omega_{I}(t)$:

$$
\left.\begin{array}{c}
2 \delta b(t)+\int_{L}\left\{K_{1}(t, \tau) \Omega_{1}(\tau)+K_{2}(t, \tau) \overline{\Omega_{1}(\tau)}\right\} d s=f(t), \\
K_{1}(t, \tau) d s=\frac{a(t)}{\pi i \omega_{1}^{\prime}\left(\zeta_{1}\right)}\left[\frac{d \tau_{1}}{\eta_{1}-\zeta_{1}}+\frac{(-1)^{\delta} n_{1} \overline{b(\tau)} d \bar{\tau}_{2}}{\zeta_{1}\left(1-\zeta_{1} \bar{\eta}_{2}\right)}\right]+\frac{b(t)}{\pi i \omega_{1}^{\prime}\left(\zeta_{1}\right)}\left[\frac{\bar{l}_{1} d \tau_{1}}{\bar{\zeta}_{1}\left(1-\bar{\zeta}_{1} \eta_{1}\right)}-\right. \\
\left.-\frac{n_{1} a(\tau) d \tau_{2}}{\zeta_{1}\left(1-\bar{\zeta}_{1} \eta_{2}\right)}\right]-\frac{1}{\pi i \omega_{2}^{\prime}\left(\zeta_{2}\right)}\left[\frac{a(\tau) d \tau_{2}}{\eta_{2}-\zeta_{2}}-\frac{(-1)^{\delta} n_{2} \overline{b(\tau)} d \bar{\tau}_{2}}{\zeta_{2}\left(1-\zeta_{2} \bar{\eta}_{2}\right)}\right], \\
K_{2}(t, \tau) d s=\frac{a(t)}{\pi i \omega_{1}^{\prime}\left(\zeta_{1}\right)}\left[\frac{l_{1} d \tau_{1}}{\zeta_{1}\left(\zeta_{1} \bar{\eta}_{1}-1\right)}+\frac{n_{1} \overline{a(\tau)} d \bar{\tau}_{2}}{\zeta_{1}\left(1-\zeta_{1} \bar{\eta}_{2}\right)}\right]-\frac{b(t)}{\pi i \omega_{1}^{\prime}\left(\zeta_{1}\right)} \tag{7}
\end{array}\right] \frac{d \bar{\tau}_{1}}{\overline{\eta_{1}-\zeta_{1}}+} .
$$

Fig. 3

Fig. 4

$$
\begin{align*}
& \left.+\frac{(-1)^{\delta} \bar{n}_{1} b(\tau) d \tau_{2}}{\bar{\zeta}_{1}\left(1-\overline{\zeta_{1}} \eta_{2}\right)}\right]-\frac{1}{\pi i \omega_{2}^{\prime}\left(\zeta_{2}\right)}\left[\frac{(-1)^{\delta} b(\tau) d \tau_{2}}{\eta_{2}-\zeta_{2}}+\frac{l_{2} d \bar{\tau}_{1}}{\zeta_{2}\left(1-\zeta_{2} \bar{\eta}_{1}\right)}-\frac{n_{2} \overline{a(\tau)} d \bar{\tau}_{2}}{\zeta_{2}\left(1-\zeta_{2} \bar{\eta}_{2}\right)}\right], \tag{7}\\
& f(t)=2\left\{\delta F(t)-a(t) \Phi_{1}{ }^{0}\left(t_{1}\right)-b(t) \overline{\Phi_{1}{ }^{0}\left(t_{1}\right)}-\Phi_{2}{ }^{0}\left(t_{2}\right)\right\},
\end{align*}
$$

where ds is an element of length of the arc L; $\delta=0(1)$ at $t \in L^{\prime}\left(L_{0}\right)$.
We need to add to Eqs. (7) conditions for the nonambiguity of the displacements in the circumvention of each slit

$$
\begin{equation*}
\int_{L_{j}} \Omega_{1 j}(\tau) d \tau_{1}=0 . \tag{8}
\end{equation*}
$$

Following [7], we can show that the solution of Eq. (7) with additional conditions (8) in the class of functions

$$
\begin{gathered}
\Omega_{j}(t)=\Omega^{j}(t)\left[\left(t-a_{j}\right)\left(t-b_{j}\right)\right]^{-1 / 2}, j=\overline{1, n}, \\
\Omega^{j}(t) \in H\left(L_{j}\right), \Omega_{0}(t) \in H\left(L_{0}\right)
\end{gathered}
$$

[$\mathrm{H}\left(\mathrm{L}_{\mathrm{j}}\right)$ are bounded functions which are continuous on L_{j} in accordance with Holder's condition] exists and is unique. Using the Gauss-Chebyshev formulas for the integrals over L^{\prime} and the rectangle formulas for the integrals over L_{0}, we reduce the solution of IE (7), (8) to the solution of a system of linear algebraic equations relative to the approximate values of the sought functions $\Omega j(t), \Omega_{0}(t)$ at the nodal points. Having solved it, we can use potentials (1), (4), and (5) and the formulas in [8] to find the stress distribution in the plate and the SIF for normal rupture and shear $K_{1}=\lim _{t \rightarrow c} \sigma_{n} \sqrt{2 \pi r}, K_{2}=\lim _{t \rightarrow c} \tau_{n} \sqrt{2 \pi r}$ at the tip c of a crack ($r=|t-c|, t$ is a point lying on the extension of the crack past the end c on a tangent). In the case where a crack is present on the contour of an internal hole, the potentials (4), Eqs. (7)-(8), and the algorithm for the numerical solution of the IE should be modified appropriately [8].

Presented below are certain applications of the above solutions in regard to evaluation of the SIF at the tips of edge cracks growing from the contour of a free or loaded hole of radius a with its center at the origin of the coordinates in a rectangular plate ($L_{0}=\{x=$ $\pm w ;-d<y<e\})$.

Let two edge cracks $L_{1,2}=\left\{t=\tau^{1,2}(\beta)= \pm[a+\ell(1+\beta)]|\beta|<1\right\}$ originate from the contour of a circular hole. The plate is loaded through a rigid pin inserted without an allowance into the hole with the force $\mathrm{P}=2 a \mathrm{~h} \sigma$ (σ is the crushing strength) along the y axis. Self-balanced, uniformly distributed forces $\sigma_{1}=P_{1} /(2 \mathrm{wh})$ are applied to the lower edge of the plate $y=-\mathrm{d}$. To simplify the problem, we assume that friction is absent in the
TABLE 1

		δ							δ								
No.	η	0,08	0,09	0,10	0,14	0,20	0,21	0,28	0,30	0,35	0,40	0,42	0,49	0,50	0,56	0,60	0,63
1	$\begin{aligned} & 1,0 \\ & 2,0 \end{aligned}$	$\begin{aligned} & \frac{1,666}{1,633} \\ & \frac{1,153}{1,119} \end{aligned}$	$\begin{aligned} & \frac{1,736}{1,711} \\ & \frac{1,200}{1,171} \end{aligned}$	$\begin{aligned} & \frac{1,799}{1,782} \\ & \frac{1,241}{1,216} \end{aligned}$	$\begin{aligned} & \frac{2,010}{2,008} \\ & \frac{1,375}{-} \end{aligned}$	$\begin{aligned} & \frac{2,251}{-} \\ & \frac{1,516}{1,501} \end{aligned}$	$\begin{aligned} & \frac{2,285}{2,293} \\ & 1,534 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{2,511}{2,523} \\ & \frac{1,657}{-} \end{aligned}$	$\begin{aligned} & \frac{2,571}{-} \\ & \frac{1,689}{1,673} \end{aligned}$	$\begin{aligned} & \frac{2,715}{2,731} \\ & \frac{1,767}{-} \end{aligned}$	$\begin{aligned} & \frac{2,855}{-} \\ & \frac{1,842}{1,825} \end{aligned}$	$\begin{aligned} & \frac{2,909}{2,932} \\ & \frac{1,873}{-} \end{aligned}$	$\begin{aligned} & \frac{3,099}{3,131} \\ & \frac{1,991}{-} \end{aligned}$	$\begin{gathered} \frac{3,126}{-} \\ \frac{2,009}{1,990} \end{gathered}$	$\begin{aligned} & \frac{3,285}{3,330} \\ & \frac{2,127}{-} \end{aligned}$	$\begin{gathered} \frac{3,391}{-} \\ \frac{2,217}{2,179} \end{gathered}$	$\begin{aligned} & \frac{3,401}{3,531} \\ & \frac{2,293}{-} \end{aligned}$
2	$\begin{aligned} & 1,0 \\ & 2,0 \end{aligned}$	$\begin{aligned} & \frac{0,798}{0,790} \\ & \frac{0,637}{0,611} \end{aligned}$	$\begin{aligned} & \frac{0,852}{0,836} \\ & \frac{0,665}{0,647} \end{aligned}$	$\begin{aligned} & \frac{0,879}{0,879} \\ & \frac{0,701}{0,678} \end{aligned}$	$\begin{aligned} & \frac{1,031}{1,027} \\ & \frac{0,802}{-} \end{aligned}$	$\begin{gathered} \frac{1,211}{-} \\ \frac{0,933}{0,926} \end{gathered}$	$\begin{aligned} & \frac{1,239}{1,240} \\ & \frac{0,953}{-} \end{aligned}$	$\begin{aligned} & \frac{1,428}{1,432} \\ & 1,082 \\ & \hline- \end{aligned}$	$\begin{aligned} & \frac{1,481}{-} \\ & \frac{1,117}{1,112} \end{aligned}$	$\begin{aligned} & \frac{1,612}{1,620} \\ & 1,205 \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1,746}{-} \\ & \frac{1,295}{1,290} \end{aligned}$	$\begin{aligned} & \frac{1,800}{1,812} \\ & 1,332 \\ & \hline- \end{aligned}$	$\begin{aligned} & \frac{1,996}{2,015} \\ & \frac{1,470}{-} \end{aligned}$	$\begin{aligned} & \frac{2,025}{-} \\ & \frac{1,482}{1,486} \end{aligned}$	$\begin{aligned} & \frac{2,205}{2,232} \\ & \frac{1,630}{-} \end{aligned}$	$\begin{aligned} & \frac{2,333}{-} \\ & \frac{1,735}{1,716} \end{aligned}$	$\begin{aligned} & \frac{2,433}{2,471} \\ & \frac{1,823}{-} \end{aligned}$
3	1,0 2,0	1,882 1,879 1,205 1,197	$\begin{aligned} & \frac{1,963}{1,963} \\ & \frac{1,249}{1,248} \end{aligned}$	$\begin{aligned} & \frac{2,057}{2,040} \\ & \frac{1,289}{1,291} \end{aligned}$	$\begin{aligned} & \frac{2,279}{2,279} \\ & \underline{1,425}- \end{aligned}$	$\frac{\frac{2,525}{-}}{\frac{1,553}{1,304}}$	$\begin{aligned} & \frac{2,559}{2,574} \\ & \frac{1,570}{-} \end{aligned}$	$\begin{aligned} & \frac{2,781}{2,799} \\ & \frac{1,677}{-} \end{aligned}$	$\begin{aligned} & \frac{2,838}{-} \\ & \frac{1,704}{1,711} \end{aligned}$	$\begin{aligned} & \frac{2,975}{3,002} \\ & 1,771 \\ & - \end{aligned}$	$\frac{3,107}{-}$ $\frac{1,839}{1,846}$	$\begin{aligned} & \frac{3,158}{3,196} \\ & \frac{1,868}{-} \end{aligned}$	$\begin{aligned} & \frac{3,331}{3,382} \\ & \frac{1,976}{-} \end{aligned}$	$\frac{3,356}{-}$ $\frac{1,993}{1,999}$	$\begin{aligned} & \frac{3,499}{3,568} \\ & 2,104 \\ & \hline- \end{aligned}$	$\begin{gathered} \frac{3,593}{-} \\ \frac{2,189}{2,180} \end{gathered}$	$\begin{aligned} & \frac{3,662}{3,754} \\ & \frac{2,262}{-} \end{aligned}$

Note. A bar for the denominator denotes a lack of data.

TABLE 2

η	δ	M			
		10	20	30	40
1,0	0,1	2,008	2,023	2,034	2,057
	0,6	3,313	3,356	3,572	3,593
2,0	0,1	1,290	1,299	1,299	1,299
	0,6	1,889	2,159	2,188	2,189

region of contact of the pin and the plate. The transmission of force from the pin to the plate will be modeled by a) a normal pressure σ distributed over a half-circle $\pi<\gamma<2 \pi$; b) a pressure distributed in accordance with the sine law $\sigma(t)=(4 \sigma / \pi)|\sin \gamma|(\pi<\gamma<2 \pi)$.

Then, unless otherwise specified, the elastic parameters of the plate material $E_{1}=$ $53.84 \mathrm{GPa}, \mathrm{E}_{2}=17.95 \mathrm{GPa}, \mathrm{G}_{12}=8.63 \mathrm{GPa}$, and $\nu_{1}=0.25$. The solid (dashed) lines in the figures pertain to the case when the angle φ formed by the principal direction of anisotropy E_{1} and the x axis is equal to $0(\pi / 2)$.

For case (b), Fig. 1 shows the results of calculations of corrected SIF values for normal rupture $K=K_{1} / K^{*}\left(K^{*}=\sigma \sqrt{\pi(a+2 \ell)}\right.$ - the SIF for normal rupture at the tips of an "equivalent" crack of the length $L^{*}=2(a+2 \ell)$ in an infinite plate subjected to tension by forces $\sigma_{\mathrm{y}}{ }^{\infty}=\sigma$) in relation to $\delta=2 \ell / a$ with $\mathrm{w} / \mathrm{a}=2 ; \mathrm{d} / a=4 ; 6$ and e/a $=4 ; 2$ (curves 1 and 2, respectively). A decrease in the distance from the center of the hole to the unloaded edge of the plate markedly increases the SIF ($\approx 25-50 \%$). The increase is especially substantial if the principal direction of anisotropy corresponding to $E_{1}\left(E_{1}>E_{2}\right)$ coincides with the y axis ($\varphi=\pi / 2$).

Figure 2 shows the dependence of K on $\lambda=(a+2 \ell) / w$ for cases (a) and (b) (curves 1 and 2 , respectively) with $\mathrm{e}=\mathrm{d}=2 \mathrm{w}, \mathrm{w} / a=4 ; 2$. The angle φ has a slight effect on the value of K in the investigated ranges of the parameters. Uniform pressure (case a, curves 1) causes the SIF for normal rupture K_{1} to be approximately $10-30 \%$ less than the values of the SIF for the case of distribution in accordance with a sine law (case b, curves 2). Such a reduction can evidently be attributed to the effect of local pressure along the axis of the crack. The calculations showed that the effect of this distribution law is particularly great for short cracks. Thus, the assumptions made in regard to the type of force distribution on the pin may result in a substantial difference between theoretical estimates of residual life and actual experimental data.

In many design schemes, loads arise on the surface of the hole due to pressure from the pin distributed over the surface $\sigma(t)$ in combination with a constant pressure p over the contour of the hole. This situation is seen, for example, in the case of a fastener installed with a negative allowance. For the case (b), Fig. 3 shows the dependence of the correction factor $\mathrm{K}^{*}=\mathrm{K}_{1}\left(\sigma_{1} \sqrt{2 \pi \ell}\right)^{-1}$ on $\xi=\ell / a$ with $\mathrm{w} / \mathrm{a}=10$; $\mathrm{e} / \mathrm{w}=\mathrm{d} / \mathrm{w}=1$ at $\mathrm{p}=0$; 0.4 a ; σ (curves 1-3). An increase in the negative allowance p is accompanied by a substantial increase in K*. This is particularly evident for short cracks ($\delta<0.5$).

In joints with a large number of pins (in structures composed of sheets joined together with a large number of rivets or bolts), only part of the entire load taken up by the joint can be transmitted through a given pin (bolt, rivet). Figure 4 shows the effect of the proportion of the force transmitted through the pin. The dependence of K^{*} on ξ was constructed for different ratios of the transmitted load $\mathrm{P} / \mathrm{P}_{0}=1 ; 0.4 ; 0.2$ (curves $1-3$) with w/a $=10$; $e / w=d / w=1$ and an orthotropic plate material.

To evaluate the convergence of the algorithm and check the reliability of the results, we will examine three cases of loading of an isotropic rectangular plate ($\mathrm{e}=\mathrm{d}=\mathrm{H}$): 1) uniformly distributed forces σ are applied to the lower and upper edges of the plate $y= \pm H$ (uniaxial tension); 2) a uniform normal pressure is applied to the contour of the hole; 3) a normal pressure $\sigma(t)=(4 \sigma / \pi)|\sin \gamma|(0<\gamma<2 \pi)$ distributed according to a sine law is applied to the contour of the hole. Data for an isotropic material was found by taking the limit in the anisotropy parameters in a numerical solution (in the calculations, we assumed that $\mu_{1}=0.998 i ; \mu_{2}=1.002 i$).

For comparison, Table 1 shows normalized values of the SIF K obtained on a BÉSM- 6 computer within the framework of the proposed method (in the numerator) using $L_{0} M=20$ nodes on one-fourth of the boundary and the corresponding results from [9] (in the denominator) obtained by the collocation method for $w / a=2$ and different $\delta=2 \ell / a$ and $\eta=H / w$. In all cases, the number of Chebyshev nodes M_{1} on the contour of the cracks was assumed to be equal to 10. Fully satisfactory agreement is seen.

For case 3, Table 2 shows values of K^{*} at $\mathrm{M}=10 ; 20 ; 30 ; 40 ; \mathrm{M}_{1}=10 ; \eta=1$; 2 and $\delta=$ 0.1; 0.6. The calculations show that even the use of the simplest method of discretizing the boundary L_{0} (uniform subdivision) and rectangle integration formulas makes it possible to obtain a stable count and good convergence in the approximate solution for both short and long cracks. The values of SIF in Figs. 1-4 coincide to within the first two significant figures even with the number of nodes on half of the boundary $L_{0} N \geq 50$ and on the contour of the crack $M_{1} \geq 10$.

LITERATURE CITED

1. Fracture Mechanics and Strength of Materials. Reference. Vol. 2. Stress Intensity Factors in Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1988).
2. D. L. Ball, "The development of mode I, linear elastic stress intensity factor solutions for cracks in mechanically fastened joints," Eng. Fract. Mech., 27, No. 6 (1987).
3. Mechanics of Composite Materials and Structural Elements. Vol. 1. Mechanics of Composite Materials [in Russian], Naukova Dumka, Kiev (1982).
4. 0. S. Sirotkin, G. P. Zaitsev, K. V. Kaikov, and V. B. Litvinov, "Contact interaction of metal-composite hinge joint in the presence of crack-like defects," Mekh. Kompozit. Mater., No. 1 (1987).
1. J. H. Crews, "A survey of strength analysis methods for laminates with holes," J. Aeronaut. Soc. India, 36, No. 4 (1984).
2. G. N. Savin, Stress Distribution Around Holes, Naukova Dumka, Kiev (1968).
3. D. I. Sherman, "Solution of a plane problem of the theory of elasticity for an anisotropic medium," Prikl. Mat. Mekh., 6, No. 6 (1942).
4. V. N. Maksimenko, "Limit equilibrium of an anisotropic plate weakened by an elliptical hole and a system of cracks of complex form," Uch. Zap. TsAGI, No. 3 (1987).
5. D. J. Cartwright and A. P. Parker, "Opening mode stress intensity factors for cracks in pin-loaded joints," Int. J. Fract., 18, No. 1 (1982).
