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DETERMINATION OF STRESS INTENSITY FACTORS AT THE TIPS OF CRACKS GROWING 

FROM LOADED HOLES IN FINITE ANISOTROPIC PLATES 

V. N. Maksimenko UDC 539.43:621.8 

In pin, bolt, and rivet joints, stress concentration in combination with fretting be- 
tween the fastening element and the surface of the hole may lead to the formation of damages 
and defects. In order to be able to predict the safe life of a structure, it is necessary 
to be able to precisely calculate the limit load and estimate the growth of defects near 
fastener holes in such joints. A survey of the studies done in this area for isotropic elas- 
tic plates can be found in [i, 2], for example. Progress is being made relatively slowly in 
regard to the investigation of the problem for plates made of composite materials (see the 
surveys in [3-5], for example). The reason for this is a shortage of information on the ef- 
fect of the anisotropy of the material, the boundaries of the plate, and the type of load 
transmission on the stress intensity factors (SIF) at the tips of cracks near loaded holes. 

In the present study, we construct special representations of the solution of problems 
involving determination of the elastic equilibrium of a finite rectilinear anisotropic plate 
with a system of through slits and a loaded elliptical hole. Automatic satisfaction of the 
boundary conditions at the contour of the hole makes it possible to reduce the problem to 
the solution of a system of integral equations (IE) whose order is one less than the number 
of components of the boundary of the region. The absence of an unknown function at the 
boundary of the hole makes it possible to more efficiently find numerical solutions. Using 
the example of a rectangular plate with cracks originating from the contour of a hole loaded 
through a pin, we study the effect of anisotropy of the material, a wide range of pin-joint 
geometries, and different combinations of load transmission from the pin and seat with inter- 
ference on the value of the SIF at the tips of the cracks. Data for an isotropic material 
is obtained by taking the limit in the anisotropy parameters in a numerical solution. 

We will examine an elastic, rectilinearly anisotropic plate of constant thickness h 
bounded by closed contours A (an ellipse with the semiaxes a and b) and L 0 (smooth longi- 
tudinal external contour) and having n smooth internal through slits (cracks) Lj (j = i, n). 

The plate is loaded by a self-balanced system of external forces applied to L 0 and A. The 

edges of the slits L' = 0 Lj are not loaded. We will make the axes of symmetry of the el- 

lipse coincide with the axes of the Cartesian coordinate system xOy. As the positive direc- 
tion on L 0 we take the direction which leaves the plate on the left. On the slit Lj, with 

ends aj and bj, the positive direction leads from aj to bj. We direct the normal n to the 
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right with positive circumvention L = 0 Lj . A generalization to the case of edge notches 
j=0 

is given below. 

The stress state of the plate can be expressed through two functions Cv(zv) (z.~ = x + 

~vY, v = i, 2) [6] 

( ~ ,  x~ u, %) = 2Re ~v, --  9`0, 1) (D v (z`0) , 

s a t i s f y i n g  t h e  b o u n d a r y  c o n d i t i o n s  [7 ,  8 ] :  

a(t)(D+l (q)  § b(t)cP+l(q) -+- (D+~(t~) = g(t), 

F(t)----- [X~(t)+-v~Y~(t)I[(v2---H2)M~(t)I -~, t ~  A U Lo; 

(1) 

(2)  

a(t)q) l  ~ (tl) -t- b( t )q)~  (t~) + q)~ (t~) = O, t ~ L ' .  (3) 

Here and below, we use the notation from [8]; the superscript + (-) denotes the limiting 
value of functions as they approach the contour from the left (right); Xn(t) , Yn(t) are pro- 
jections of the external forces at the point t e A U L 0 on the x, y axes; ~v are roots of 
the characteristic equation. 

Using the results in [8], we represent the sought functions as 

1 

j=0  
(4)  

= [2~.~`0 (;~)]-~ [ % _ ;̀ 0 + ~̀ 0 (c.,~-.~) + ~̀ 0 ( ~n ~ -  ~)/ 

where  a v ( t )  = { f i v j ( t ) l t  e L j ,  j = O, n} a r e  unknown complex  f u n c t i o n s ;  C v : ( z v )  i s  t h e  s o l u -  

t i o n  for an infinite anisotropic plate with an elliptical hole subjected to specified ex- 
ternal forces about its contour. 

We will use r(~) and q(~) to represent the projections of the external forces on a nor- 
mal and a tangent to the contour A = {z = a cos~ -- ibsinyl0 5 ~ < 2~}. To avoid the compu- 
tational problems that would arise if ~v~ were represented in the form of an infinite 
series or integrals of the Cauchy type [6], we will approximate r(~) and q(~) by piecewise- 
constant expressions 

r(y) ~ r 3, q(5~) ~ q2, Yi-1 ~ ~? ~ ?J, YJ -~  jA~?, 

A?-=- 2 a / k ,  j = 1, k. 

T h i s  can  a l w a y s  be done  w i t h  a p r e s c r i b e d  d e g r e e  o f  a c c u r a c y  g i v e n  s u f f i c i e n t l y  l a r g e  k.  
Then after performing certain transformations we obtain the following closed analytical 
representations for Ov~ 

h 

r (z~j = [~ (~`0)1 -I E J ~ ~ ' ' {r jr  (~,) + qj~`0~ (z41,  
j ~ l  

AV'v3 i l j  i t OP~v (Z,) g, + (~`0 -- tx~_,) (~j -- ~̀ 0) 4~ 0% -- ~%_`0) ,[a'Aj + bv6j] s,j + 

[ t ( l n t v ~ - - l n m j ) l }  %J q_ ~ + b,~ v [ln t~j - -  ~s~j] + c̀ 0 v ~ ~ 

a I ~ - -  a~a-~,, a2 = a, b 1 = ib, b.2 = ibex3_`0, 9`0 = uv + i ~ ,  

t 6 j  t a j  - -  (lj__ 1 
Aj ~ (li_ i q- --, ~ 0)-i o .  ' sv) ~ ~ 1-1 (o'j -- ~`0) (o'j_ 1 -- i,0) 

qi--1-  % ib H- a~8-`0, b y 1 =  i b - -  a~3_~, b~. 2 = a +  ib~t3_~, tvj = - ~ - - = -  , c`01= 
) -- gv 

c`02 --- ib~t3_`0 - -  a, m 5 = (Yj_I/(Yj, 

(5) 
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M p.vJ = 2i F3-~, Im (APi + A~j) - -  ~_~ ( ~ R e  A~j + (za Im APj , 
~t=l 

z ,  = z~ ( ~ )  = a + m @  ~ - -  ~ , b  

Z,y-- V 2 
~,, = ~,~ ( z 4  = ~ + m , >  ' ~" ( o o )  = 0 ,  

(5) 

where oj = exp (-iyj), while AvjP are determined from the system of equations 

2 
E [ h-- f  Ap h--2,tp- ' l  P . t~ -~'~9-- ~ -~,J) = b J ( 2 ~ 0  (k = t,  4), 

'V=l 
a bPl = - -  alfbPa22mt- a26bV, b~ =--~ (Aj+~ - -  A.~), b~ = 2-ib (6j - -  5.~+,1, 

a ~P ~ a hP 
b~=--b~ ,  b~=- -b~ ,  b~ ~6-~ - , ~ - ~  

Here, @vpJ(zv) are solutions for a plate with a hole loaded on the part [z(yj_l), z(yj)] of 

the contour A by unit normal forces (p = I) and shearing forces (p = 2). 

The thus-constructed potentials @v(zv) (4), (5) automatically satisfy boundary condi- 
tions (2) on A. Following [7], we take 

Qf(t) = --a(t)Qt(t) + b(t)Qt(t), t ~  Lo. (6 )  

Inserting limiting values of @~(z v) from (4) into boundary conditions (2)-(3), consider- 
ing (6), and performing certain transformations, we obtain a system of singular IE on L' and 
Fredholm IE of the second kind on L 0 for the sought functions ill(t): 

26b (t) + S {Kt (t, ~) -Q1 (x) + K~ (t, T) ~, (x)} ds = ] (t), 
L 

K~(t,-0d,= z,_('_) [ a-~, (-1)~nlb(~)~l b(,) [ z~a~ 
=,%(;,) L~-7~ + q( , -~TJ j +  =,%'(;,) :,(i=T,~l) 

n la  (%) d1:2 ] ,[ [a (rV) d"c 2 (-- i) 5 n2b (1:) d~21 

" Z%iOl ('~1) [ :1 (~1~1 --  l) + : 5 t  ~ : ' ~ 2 ) ' J  giO)~l (~1) [ . ~  -[- 

(7) 
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(-- t)8 nlb ('~) iT21 t [ (-- t)8 b (T) dT 2 12d~ 1 n2a(T) d~2] (7)  

+ ~ ( t - ~ n 2 )  j ~'~(~,~) ~ - ~ ~  " + ~ ( ~ - ~ , , ~ )  ~ ( ~ - t ~ ) '  

/(t) = 2{6F(t)- - -a( t )cOl~ b(t)cD~~ -- ~2~ 

where ds is an element of length of the arc L; 6 = 0(i) at t e L'(L0). 

We need to add to Eqs. (7) conditions for the nonambiguity of the displacements in the 

circumvention of each slit 

~ lj (T) & l  = O. 

Following [7], we can show that the solution of Eq. 
in the class of functions 

( s )  

(7) with additional conditions (8) 

9j(t)  = ~J(t)[(t - aj)(t - b j ) ] ' / ' ,  / = 1, n, 

~J(t)~ H(Lj), ~)o(t) ~ H(Lo) 

[H(Lj )  a r e  bounded f u n c t i o n s  which  a r e  c o n t i n u o u s  on Lj in  a c c o r d a n c e  w i t h  H o l d e r ' s  c o n d i -  

t i o n ]  e x i s t s  and i s  u n i q u e .  Using t h e  Ga us s -Che byshe v  f o r m u l a s  f o r  t h e  i n t e g r a l s  ove r  L' 
and t h e  r e c t a n g l e  f o r m u l a s  f o r  t h e  i n t e g r a l s  ove r  L0, we r e d u c e  t h e  s o l u t i o n  o f  IE ( 7 ) ,  (8)  
to the solution of a system of linear algebraic equations relative to the approximate values 
of the sought functions ~J(t), ~0(t) at the nodal points. Having solved it, we can use po- 
tentials (i), (4), and (5) and the formulas in [8] to find the stress distribution in the 

plate and the SIF for normal rupture and shear KI = lim On~2-~r, K 2 = lim ~n 2v~r at the tip 
t+c t+c 

c of a crack (r = It - c[, t is a point lying on the extension of the crack past the end c 
on a tangent). In the case where a crack is present on the contour of an internal hole, the 
potentials (4), Eqs. (7)-(8), and the algorithm for the numerical solution of the IE should be 

modified appropriately [8]. 

Presented below are certain applications of the above solutions in regard to evaluation 
of the SIF at the tips of edge cracks growing from the contour of a free or loaded hole of 
radius a with its center at the origin of the coordinates in a rectangular plate (L0 = {x = 
• -d < y < e}). 

Let two edge cracks LI,2 = {t = TI,2(~) = • + s + $)]161 < i} originate from the 
contour of a circular hole. The plate is loaded through a rigid pin inserted without an 
allowance into the hole with the force P = 2aho (o is the crushing strength) along the y 
axis. Self-balanced, uniformly distributed forces o I = Pz/(2wh) are applied to the lower 
edge of the plate y = -d. To simplify the problem, we assume that friction is absent in the 
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TABLE 2 

I /%f 
6 lo 12o 13o 40 

t,0 O,i 12,008 2,023 2,034 2,057 
I 3,593 3,572 0,8 3,313 3,356 

2,0 1,299 
2,189 

O,l I i,290 [ i,299 i,299 
0,6 i,889 2,i59 2,188 

region of contact of the pin and the plate. The transmission of force from the pin to the 
plate will be modeled by a) a normal pressure o distributed over a half-circle ~ < 7 < 2~; 
b) apressure distributed in accordance with the sine law o(t) = (4~/~)IsinTl(v < ~ < 2z). 

Then, unless otherwise specified, the elastic parameters of the plate material E I = 
53.84 GPa, E 2 = 17.95 GPa, G12 = 8.63 GPa, and ~i = 0.25. The solid (dashed) lines in the 
figures pertain to the case when the angle ~ formed by the principal direction of anisotropy 
El and the x axis is equal to 0 (~/2). 

For case (b), Fig. 1 shows the results of calculations of corrected SIF values for nor- 

mal rupture K = KI/K* (K* = os + 2s - the SIF for normal rupture at the tips of an 
"equivalent" crack of the length L* = 2(a + 2s in an infinite plate subjected to tension 
by forces Oy = o) in relation to 6 = 2i/a with w/a = 2; d/a = 4; 6 and e/a = 4; 2 (curves 
1 and 2, respectively). A decrease in the distance from the center of the hole to the un- 
loaded edge of the plate markedly increases the SIF (~25-50%). The increase is especially 
substantial if the principal direction of anisotropy corresponding to E l (E l > E2) coincides 
with the y axis (~ = z/2). 

Figure 2 shows the dependence of K on ~ = (a + 2s for cases (a) and (b) (curves 1 
and 2, respectively) with e = d = 2w, w/a = 4; 2. The angle ~ has a slight effect on the 
value of K in the investigated ranges of the parameters. Uniform pressure (case a, curves 
i) causes the SIF for normal rupture K I to be approximately 10-30% less than the values of 
the SIF for the case of distribution in accordance with a sine law (case b, curves 2). Such 
a reduction can evidently be attributed to the effect of local pressure along the axis of 
the crack. The calculations showed that the effect of this distribution law is particularly 
great for short cracks. Thus, the assumptions made in regard to the type of force distribu- 
tion on the pin may result in a substantial difference between theoretical estimates of resi- 
dual life and actual experimental data. 

In many design schemes, loads arise on the surface of the hole due to pressure from the 
pin distributed over the surface o(t) in combination with a constant pressure p over the con- 
tour of the hole. This situation is seen, for example, in the case of a fastener installed 
with a negative allowance. For the case (b), Fig. 3 shows the dependence of the correction 

factor K* = K1(olV~ -I on $ = s with w/a = i0; e/w = d/w = 1 at p = 0; 0.4 o; o (curves 
1-3). An increase in the negative allowance p is accompanied by a substantial increase in 
K*. This is particularly evident for short cracks (6 < 0.5). 

In joints with a large number of pins (in structures composed of sheets joined together 
with a large number of rivets or bolts), only part of the entire load taken up by the joint 
can be transmitted through a given pin (bolt, rivet). Figure 4 shows the effect of the pro- 
portion of the force transmitted through the pin. The dependence of K* on g was constructed 
for different ratios of the transmitted load P/P0 = i; 0.4; 0.2 (curves 1-3) with w/a = 10; 
e/w = d/w = 1 and an orthotropic plate material. 

To evaluate the convergence of the algorithm and check the reliability of the results, 
we will examine three cases of loading of an isotropic rectangular plate (e = d= H): i) 
uniformly distributed forces o are applied to the lower and upper edges of the plate y = • 
(uniaxial tension); 2) a uniform normal pressure is applied to the contour of the hole; 3) 
a normal pressure o(t) = (4o/~)Isin 71 (0 < y < 2~) distributed according to a sine law is 
applied to the contour of the hole. Data for an isotropic material was found by taking the 
limit in the anisotropy parameters in a numerical solution (in the calculations, we assumed 
that D~ = 0.998i; D2 = 1.002i). 
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For comparison, Table 1 shows normalized values of the SIF K obtained on a BESM-6 com- 
puter within the framework of the proposed method (in the numerator) using L0 M = 20 nodes 
on one-fourth of the boundary and the corresponding results from [9] (in the denominator) 
obtained by the collocation method for w/a = 2 and different ~ = 2~/a and ~ = H/w. In all 
cases, the number of Chebyshev nodes M I on the contour of the cracks was assumed to be equal 
to i0. Fully satisfactory agreement is seen. 

For case 3, Table 2 shows values of K* atM = i0; 20; 30; 40; M I = i0; ~ = 1; 2 and ~ = 
0.1; 0.6. The calculations show that even the use of the simplest method of discretizing 
the boundary L 0 (uniform subdivision) and rectangle integration formulas makes it possible 
to obtain a stable count and good convergence in the approximate solution for both short and 
long cracks. The values of SIF in Figs. 1-4 coincide to within the first two significant 
figures even with the number of nodes on half of the boundary L0 N ~ 50 and on the contour 
of the crack MI ~ i0. 
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